Based on K. H. Rosen: Discrete Mathematics and its Applications.

Lecture 7: Sets, power sets, Cartesian products. Section 2.1

1 Sets, power sets, Cartesian products.

Sets are of great importance in mathematics; in modern formal treatments, most mathematical objects (numbers, relations, functions, etc.) are defined in terms of sets.

Definition 1. A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write $a \in A$ to denote that a is an element of the set A. The notation $a \notin A$ denotes that a is not an element of the set A.

Definition 2. Two sets are equal if and only if they have the same elements. Therefore, if A and B are sets, then A and B are equal if and only if

$$
\forall x(x \in A \Longleftrightarrow x \in B)
$$

We write $A=B$ if A and B are equal sets.
The classical numerical domains are denoted as follow:

1. The natural numbers $\mathbb{N}=\{0,1,2,3, \ldots\}$.
2. The integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$.
3. The rationals $\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}\right.$ and $\left.q \neq 0\right\}$.
4. The real numbers \mathbb{R}.
5. The complex numbers \mathbb{C}.

There is a special set that has no elements. This set is called the empty set, or null set, and is denoted by \emptyset. For example

$$
\emptyset=\{x \in \mathbb{R} \mid x>0 \text { and } x>2 x\}
$$

or

$$
\emptyset=\left\{x \in \mathbb{Q} \mid x^{2}=2\right\} .
$$

Definition 3. The set A is a subset of B if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

Example 4. For every subset S we have: $\emptyset \subseteq S$ and $S \subseteq S$.

Example 5. Consider the set $A=\{\{a\},\{b\}, c\}$ and the set $\{c\}$ made of one element. The set $\{c\}$, is a subset of A. On the other hand the set $\{a\}$ is a member or an element of A. We write

$$
\{c\} \subseteq A \quad \text { and } \quad\{a\} \in A
$$

Remark 6. To show that two sets A and B are equal, show that $A \subseteq B$ and $B \subseteq A$.
Definition 7. Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by $|S|$. A set is said to be infinite if it is not finite.

Definition 8. Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is denoted by $\mathcal{P}(S)$.

Definition 9. The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection that has a_{1} as its first element, a_{2} as its second element, . . . , and a_{n} as its nth element. In particular, ordered 2-tuples are called ordered pairs.

Definition 10. Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence,

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\} .
$$

Remark 11. A subset R of the Cartesian product $A \times B$ is called a relation from the set A to the set B.

Questions

(a) List all subsets of the 3 -element set $A=\{1,2,3\}$. How many subsets are there?

